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Review : Gamma integral structure for Pn

Pn : n-dimensional projective space

↓ the Gromov–Witten theory of Pn
∃ Frobenius structure (= the quantum cohomology of Pn) on the complex

manifold

MPn :=
⊕
q∈Z

Hq,q(Pn).

The Gamma integral structure for an algebraic variety was introduced by Iritani

and Katzarkov–Kontsevich–Pantev.
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Define a morphism chΓ : K0(Db(Pn)) −→ H∗(Pn) by

chΓ([E]) := Γ̂PnCh(E), E ∈ Db(Pn).

Γ̂Pn :=

n∏
i=1

Γ(1 + δi) : the Gamma class of Pn,

(δ1, . . . , δn : the Chern roots of the tangent bundle of Pn).

Ch(E) :=
rankE∑
i=1

e[δEi ] : the (modefied) Chern roots of E ∈ Db(Pn),

(δE1 , . . . , δ
E
rankE : the Chern roots of E).

Here e[−] = exp(2π
√
−1 · −).

Definition 1.1 (Iritani).

The Gamma integral structure of the total Hodge cohomology space H∗(Pn) is
defined to be a K-framing given by

1

(2π
√
−1)n

chΓ(K0(Db(Pn))).
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(O(0),O(1), . . . ,O(n)) : Beilinson’s full exceptional collection on Db(Pn).
{bi}ni=0 : homogeneous basis of H∗(Pn) such that bi ∈ Hi,i(X).

S : matrix representation of the automorphism on K0(Db(X)) induced by

the Serre functor S := −⊗ ωPn [n] w.r.t. {[O(i)]}.

χ : the Euler matrix w.r.t. {O(i)}.

chΓ := (chΓ,1, . . . , chΓ,n+1) is the matrix such that i-th column chΓ,i is

given by

chΓ,i := chΓ(O(i)) ∈ H∗(X).

Q̃ : the grading (diagonal) matrix on H∗(X). That is,

Q̃ii :=
(
i− n

2

)
.

η : the matrix representation of the Poincaré pairing w.r.t. {bi}.
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Proposition 1.2 (Iritani).

The following equality holds:(
1

(2π)
n
2
chΓ

)−1

e[Q̃]

(
1

(2π)
n
2
chΓ

)
= S,

(
1

(2π)
n
2
chΓ

)T
e

[
1

2
Q̃

]
η

(
1

(2π)
n
2
chΓ

)
= χ.

1

(2π)
n
2
chΓ = the central connection matrix of the Frobenius manifold

χ = the Stokes matrix of the Frobenius manifold
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The mirror object of Pn is the Landau–Ginzburg model with a primitive form

fq : (C∗)n −→ C, fq(x1, . . . , xn) := x1 + · · ·+ xn +
q

x1 . . . xn

ζ =

[
dx1 ∧ · · · ∧ dxn

x1 . . . xn

]
for q ∈ C∗.

In the mirror side, there is a “natural” integral structure on

Ωfq ∼= Hn((C∗)n,Re(fq) � 0;C) induced by Hn((C∗)n,Re(fq) � 0;Z).

Theorem 1.3 (Iritani).

The Gamma integral structure on H∗(X) is isomorphic to the natural one on

Ωfq .

It is known by Coates–Corti–Iritani–Tseng and Iritani that for a weak Fano

toric orbifold X the same statement of Theorem 1.3 is true.
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Invertible polynomial

f ∈ C[z1, . . . , zn]: weighted homogeneous polynomial.

⇔ ∃w1, . . . , wn, d ∈ Z≥1 such that

f(λw1z1, . . . , λ
wnzn) = λdf(z1, . . . , zn), λ ∈ C∗.

Definition 2.1.

A weighted homogeneous polynomial f = f(z) is invertible if

f is non-degenerate. That is, f has at most an isolated critical point at

the origin z = 0.

f is of the form

f(z1, . . . , zn) =

n∑
i=1

n∏
j=1

z
Eij

j

for Eij ∈ Z≥0, i, j = 1, . . . , n.

The matrix E := (Eij) of size n is invertible over Q.
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Jacobian algebra : Jac(f) := C[z1, . . . , zn]
/(

∂f

∂z1
, . . . ,

∂f

∂zn

)
.

Milnor number : µf := dimC Jac(f).

C-vector space Ωf : Ωf := Ωn(Cn)/df ∧ Ωn−1(Cn).
By choosing a nowhere vanishing n-form dz := dz1 ∧ · · · ∧ dzn we have

the following isomorphism

Jac(f)
∼=−→ Ωf , [φ(z)] 7→ [φ(z)dz].

Ωf is an analogue of the total Hodge cohomology for an algenraic variety.

non-degenerate symmetric C-bilinear form Jf : Ωf × Ωf −→ C :

Jf ([φ1(z)dz], [φ2(z)dz]) := ResCn

φ1(z)φ2(z)dz1 ∧ · · · ∧ dzn
∂f

∂z1
, . . . ,

∂f

∂zn

 .
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Let f1 ∈ C[z1, . . . , zn] and f2 ∈ C[z′1, . . . , z′m] be invertible polynomials.

The Thom–Sebastiani sum f1 ⊕ f2 is defined by

f1 ⊕ f2 := f1 ⊗ 1 + 1⊗ f2 ∈ C[z1, . . . , zn]⊗C C[z′1, . . . , z′m].

Proposition 2.2 (Kreuzer–Skarke).

Any invertible polynomial f can be written as a Thom–Sebastiani sum

f = f1 ⊕ · · · ⊕ fp of invertible ones fν , ν = 1, . . . , p of the following types:

(chain type) za11 z2 + za22 z3 + · · ·+ z
am−1
m−1 zm + zamm , m ≥ 1 ;

(loop type) za11 z2 + za22 z3 + · · ·+ z
am−1
m−1 zm + zamm z1, m ≥ 2.

We have

Jac(f1 ⊕ f2) ∼= Jac(f1)⊗C Jac(f2),

Ωf1⊕f2
∼= Ωf1 ⊗C Ωf2 ,

µf1⊕f2 = µf1 · µf2 , ...

9 / 35



Background

Invertible polynomial

Main results

Invertible polynomial with Group

Definition 2.3.

The group of maximal diagonal symmetries Gf of f is defined as

Gf := {(λ1, . . . , λn) ∈ (C∗)n | f(λ1z1, . . . , λnzn) = f(z1, . . . , zn)} .

Each element g ∈ Gf has a unique expression of the form

g = (e[α1], . . . , e[αn]), 0 ≤ αi < 1.

The age of g ∈ Gf is defined to be the rational number

age(g) :=

n∑
i=1

αi.
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For each g ∈ Gf , set

Fix(g) := {z ∈ Cn | g · z = z},

fg := f |Fix(g) : Fix(g) −→ C,

ng := dimC Fix(g).

Definition 2.4.

Define a Q-graded complex vector space Ωf,Gf by

Ωf,Gf :=
⊕
g∈Gf

Ωf,g, Ωf,g := (Ωfg )
Gf (−age(g)).

For the pair (f,Gf ) a non-degenerate symmetric C-bilinear form
Jf,Gf : Ωf,Gf × Ωf,Gf −→ C is defined.
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Mirror symmetry for invertible polynomials

f ∈ C[z1, . . . , zn] : invertible polynomial.

f̃ ∈ C[x1, . . . , xn] : the Berglund–Hübsch transpose of the polynomial f ,

f̃(x1, . . . , xn) :=
n∑
i=1

n∏
j=1

x
Eji

j .

It is expected by Berglund–Hübsch that the polynomial f̃ is a mirror dual

object corresponding to the pair (f,Gf ).

Proposition 2.5 (Kreuzer).

There exists an isomorphism of Q-graded C-vector spaces

mir : Ωf̃
∼= Ωf,Gf .
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Invertible polynomial of chain type

From now on, we only consider invertible polynomials of chain type:

fn := za11 z2 + · · ·+ z
an−1
n−1 zn + zann , n ≥ 1

Then the Berglund–Hübsch transpose is given by

f̃n := xa11 + x1x
a2
2 + · · ·+ xn−1x

an
n .

For simplicity, we assume that ai ≥ 2 for all i = 1, . . . , n.

fn(z) = za11 z2 + za22 z3 + fn−2(z3, . . . , zn),

f̃n(x) = f̃n−2(x1, . . . , xn−2) + xn−2x
an−1
n−1 + xn−1x

an
n .
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Proposition 2.6 (Kreuzer).

Define sets B′
n, Bn of monomials in C[x1, . . . , xn] inductively as follows:

1 (n = 0) B0 := B′
0 = {1}.

2 (n = 1) B1 := B′
1 =

{
xk11 | 0 ≤ k1 ≤ a1 − 2

}
.

3 (n ≥ 2) B′
n :=

{
xk11 xk22 · · ·xknn

∣∣∣ 0 ≤ ki ≤ ai − 1 (i = 1, . . . , n− 1)
0 ≤ kn ≤ an − 2

}
,

and

Bn := B′
n ∪

{
ϕ(n−2)(x1, . . . , xn−2)x

an−1
n |ϕ(n−2)(x1, . . . , xn−2) ∈ Bn−2

}
.

The set Bn defines a C-basis of the Jacobian algebra Jac(f̃n). Namely, we

have Jac(f̃n) = 〈[φ(n)(x)] |φ(n)(x) ∈ Bn〉C.

For i = 1, . . . , n, set

di := a1a2 · · · ai, d0 := 1.

µ̃n :=

n∑
i=0

(−1)n−idi.
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Corollary 2.7.

The Milnor number µf̃n = dimC Jac(f̃n) is given by µ̃n.

Note that #B′
f̃n

= dn − dn−1.

{ζ(n)} : the basis of Ωf̃n induced by the basis {φ(n)}.

Ωf̃n
∼=

(⊕
k

C · ζ(n)k

)⊕
Ωf̃n−2

(−1), n ≥ 2,

where k = (k1, . . . , kn) runs the set

{0 ≤ ki ≤ ai − 1 (i = 1, . . . , n− 1), 0 ≤ kn ≤ an − 2} and ζ
(n)
k is the element

corresponding to [xk11 , . . . , xknn ].
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Define two sets I ′n and In as follows:

1 (n = 0) I0 := I ′0 := {1}.

2 (n = 1) I1 := I ′1 := {1, 2, . . . , a1 − 1}.

3 (n ≥ 2) I ′n := {κ ∈ {1, . . . , dn} | an ∤ κ} and In := I ′n ∪ In−2.

Remark: #I ′n = dn − dn−1 and #In = µ̃n.

For every κ ∈ I ′n,

gκ :=

(
e

[
1

dn
κ

]
, . . . , e

[
(−1)i−1 di−1

dn
κ

]
, . . . , e

[
(−1)n−1 dn−1

dn
κ

])
∈ Gfn

has order dn and Fix(gκ) = {0}.
Define rational numbers ω

(n)
κ,i , i = 1, . . . , n by

ω
(n)
κ,i := (−1)i−1 di−1

dn
· κ−

⌊
(−1)i−1 di−1

dn
· κ
⌋

so that

gκ =
(
e
[
ω

(n)
κ,1

]
, . . . , e

[
ω(n)
κ,n

])
.
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∃ natural inclusion map

Gfn−2 ↪→ Gfn , (e[α1], . . . , e[αn−2]) 7→ (e[α1], . . . , e[αn−2], 1, 1).

We construct a basis {ξ(n)κ }κ∈In of the C-vector space Ωfn,Gfn
satisfying

Ωfn,Gfn
∼=

⊕
κ∈I′n

C · ξ(n)κ

⊕Ωfn−2,Gfn−2
(−1), n ≥ 2.

as follows:

1 (n = 0) Set ξ
(0)
1 := 1 (1 ∈ I0 = {1}).

2 (n = 1) Set ξ
(1)
κ := 1gκ , κ ∈ I1.

3 (n ≥ 2) Set

ξ(n)κ :=

1gκ κ ∈ I ′n,

[ξ
(n−2)

κ ∧ d(zan−1
n−1 ) ∧ dzn], κ ∈ In−2,

where ξ
(n−2)

κ does a differential form representing ξ
(n−2)
κ .

17 / 35



Background

Invertible polynomial

Main results

For every k satisfying xk := xk11 · · ·xknn ∈ B′
f̃n

, one can define a rational

number ω
(n)
k,i for i = 1, . . . , n.

Proposition 2.8.

There exists a bijection of sets of dn − dn−1 elements

ψ :
{
k = (k1, . . . , kn)

∣∣∣ 0 ≤ ki ≤ ai − 1 (i = 1, . . . , n− 1)
0 ≤ kn ≤ an − 2

} ∼=−→ I ′n,

such that ω
(n)
k,i = ω

(n)

ψ(k),i for each i = 1, . . . , n.
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Proposition 2.9.

There exists an isomorphism

mir : (Ωf̃n , Jf̃n)
∼= (Ωfn,Gfn

, Jfn,Gfn
), ζ

(n)
k 7→ ξ(n)κ .

Moreover, the matrix representation η(n) of Jfn,Gfn
with respect to the basis

{ξ(n)κ }κ∈In is given by

1 (n = 0) η(0) = (1),

2 (n = 1)

η(1) =

(
1

a1
δκ+λ,a1

)
,

3 (n ≥ 2)

η(n) =

 1

dn
δκ+λ,dn 0

0 − 1

an
η(n−2)

 ,

where κ and λ run the set I ′n.
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Define a diagonal matrix Q̃(n) of size µ̃n inductively as follows:

1 (n = 0) Set Q̃(0) := (0),

2 (n = 1) Set Q̃(1) :=
((
ω

(1)
κ,1 − 1

2

)
δκλ
)
,

3 (n ≥ 2) Set

Q̃(n) :=

(
P̃ (n) 0

0 Q̃(n−2)

)
,

where P̃ (n) = (P̃
(n)
κλ ) is a matrix of size (dn − dn−1) given by

P̃
(n)
κλ :=

(
n∑
l=1

(
ω

(n)
κ,l −

1

2

))
δκλ, κ, λ ∈ I ′n.

Remark: The matrix Q̃(n) corresponds to the exponents of f̃n shifted by −n
2
.
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Proposition 2.10.

For each k = (k1, . . . , kn) such that xk ∈ B′
n, we have∫

(R≥0)
n

e−f̃n(x)xkdx =
1

dn

n∏
l=1

Γ(1− ω
(n)

dn−ψ(k),l),

where Γ(s) denotes the Gamma function.

Remark : We can consider the number such as ωκ,i and ωk,i for any invertible

polynomial. Hence, this formula can be generalize to any invertible polynomial.
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Maximally graded matrix factorizations

Sn := C[z1, . . . , zn],

Lfn :=

(
n⊕
i=1

Z~zi ⊕ Z~fn

)/(
~fn −

n∑
j=1

Eij~zj ; i = 1, . . . , n

)
.

HMF
Lfn
Sn

(fn) : the homotopy category of Lfn -graded matrix factorizations.

Proposition 3.1 (Aramaki–Takahashi).

There exists a full exceptional collection (E1, . . . , Eµ̃n) of HMF
Lfn
Sn

(fn) such

that χ(Ei, Ej) = χ
(n)
ij where χ(n) is a matrix defined by χ(n) = 1/ϕn(N),

N = (δi+1,j), and

ϕn(t) :=

n∏
i=0

(
1− tdi

)(−1)n−i

(n ≥ 1), ϕ0(t) := 1− t.

S(n) : the matrix representation of the automorphism on K0(HMF
Lfn
Sn

(fn))

induced by the Serre functor with respect to the basis {[Ei]}µ̃n
i=1.
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Definition 3.2.

Define a matrix ch
(n)
Γ :=

(
ch

(n)
Γ,1, · · · , ch

(n)
Γ,µ̃n

)
of size µ̃n as follows:

1 (n = 0) Set ch
(0)
Γ := (1).

2 (n = 1) Set(
ch

(1)
Γ,j

)
κ
:= Γ

(
1− ω

(1)
κ,1

)(
1− e

[
ω

(1)
κ,1

])
e
[
ω

(1)
κ,1(j − 1)

]
, κ ∈ I1 = I ′1.

3 (n ≥ 2) Set

(
ch

(n)
Γ,j

)
κ
:=


c
(n)
κ e

[
(−1)n−1ω

(n)
κ,1(j − 1)

]
, if κ ∈ I ′n,

2π
√
−1

(
ch

(n−2)
Γ,j

)
κ
, if κ ∈ In−2 = In \ I ′n,

where

c(n)κ : =


n∏
l=1

Γ
(
1− ω

(n)
κ,l

)
·
m∏
i=1

(
1− e

[
ω

(2m−1)
κ,2i−1

])
, if n = 2m− 1,

n∏
l=1

Γ
(
1− ω

(n)
κ,l

)
·
m∏
i=1

(
1− e

[
ω

(2m)
κ,2i

])
, if n = 2m.
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The first part
∏n
l=1 Γ(1− ω

(n)
κ,l ) of c

(n)
κ can be considered as Γ̂fn,Gfn

on

the κ-sector Ωfn,gκ (cf. Chiodo–Iritani–Ruan).

The last part of c
(n)
κ can be considered as Ch(E1) on the κ-sector (cf.

Polishchuk–Vaintrob).

The part e
[
(−1)n−1ω

(n)
κ,1(j − 1)

]
comes from the auto-equivalence

((−1)nj~z1) whose matrix representation is given by(e [(−1)n−1ω
(n)
κ,1(j − 1)

]
δκλ
)

0

0 (1)

 ,

which acts on the vector ch
(n)
Γ,1 to get ch

(n)
Γ,j .

Therefore, ch
(n)
Γ,j can be considered as the matrix representation of

“Γ̂fn,Gfn
Ch(Ej)” with respect to the basis {ξ(n)κ }κ∈In .
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Main Theorem 1

Theorem 3.3 (O-Takahashi).

We have the following equality:(
1

(2π)
n
2
ch

(n)
Γ

)−1

e
[
Q̃(n)

]( 1

(2π)
n
2
ch

(n)
Γ

)
= S(n), (1)

(
1

(2π)
n
2
ch

(n)
Γ

)T
e

[
1

2
Q̃(n)

]
η(n)

(
1

(2π)
n
2
ch

(n)
Γ

)
= χ(n). (2)

This theorem is an analogue of Theorem 1.2
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(Sketch of proof)

Induction on n. (1) follows from (2).

The following lemma implies (2).

Lemma 3.4.

Let

pn(t) :=
1

ϕn(t)
· (1− tdn) =

n∏
i=1

(
1− tdi−1

)(−1)n−i

(n ≥ 1), p0(t) := 1.

We have

χ
(n)
i,j =

1

dn

dn∑
a=1

pn

(
e

[
a

dn

])
e

[
a

dn
(i− j)

]
.

pn(t) is the Poincaré polynomial of the Lfn -graded ring⊕
l⃗∈Lfn

HMF
Lfn
Sn

(fn)(E1, E1(~l)).
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Integral structures

∃ two isomorphisms

Hn(Cn,Re(f̃n) � 0;Z) ∼= Hn(Cn, f̃−1
n (1);Z) ∼= Hn−1(f̃

−1
n (1);Z).

Define a “Poincaré Duality” map D : Hn−1(f̃
−1
n (1);Z) → Ωf̃n by

D(L) := 1

(2π
√
−1)n

∑
κ∈In

(∑
λ∈In

ηλκ
∫
Γ

e−f̃nζ
(n)
λ

)
ζ(n)κ , L ∈ Hn−1(f̃

−1
n (1);Z)

where Γ ∈ Hn(Cn,Re(f̃n) � 0;Z) is corresponding to L ∈ Hn−1(f̃
−1
n (1);Z).

Define the integral structure Ωf̃n;Z of Ωf̃n by

Ωf̃n;Z := D
(
Hn−1(f̃

−1
n (1);Z)

)
.

Note that Hn−1(f̃
−1
n (1);Z) ∼= K0(DbFuk→(f̃n)).
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Homological mirror symmetry conjectures

DbFuk→(f̃n) ∼= HMF
Lf

S (fn).

Definition 3.5.

We define a K-group framing ch
(n)
Γ : K0(HMF

Lfn
Sn

(fn)) −→ Ωfn,Gfn
by

ch
(n)
Γ ([Ej ]) :=

∑
κ∈In

ch
(n)
Γ,κj ξ

(n)
κ .

We call the image Ωfn,Gfn ;Z :=
1

(2π
√
−1)n

ch
(n)
Γ

(
K0(HMF

Lfn
Sn

(fn))
)
the

Gamma integral structure of Ωfn,Gfn
.

(2π
√
−1)−n is due to the fact that Ωfn,Gfn

has the natural weight n from the

view point of the Hodge theory.
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Main Theorem 2

∃ Z/dnZ-action on Ωf̃n;Z and Ωfn,Gfn ;Z.

Z/dnZ-action on C[x1, . . . , xn] given by

(x1, . . . , xi, . . . , xn) 7→
(
e

[
1

d1

]
x1, . . . , e

[
(−1)i−1

di

]
xi, . . . , e

[
(−1)n−1

dn

]
xn

)
induces the one on Ωf̃n;Z.

The grading shift functor (~z1) on HMF
Lfn
Sn

(fn) induces the action on

Ωf̃n;Z.

Theorem 3.6 (O-Takahashi).

The mirror isomorphism mir : Ωf̃n
∼= Ωfn,Gfn

induces an isomorphism of

integral structures Ωf̃n;Z
∼= Ωfn,Gfn ;Z and the isomorphism is

Z/dnZ-equivariant.

This theorem was proven for the ADE case by Milanov–Zha.
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(Strategy of proof)

We show

ch
(n)
Γ,κ1 =

∑
λ∈In

ηλκ
∫
Γ1

e−f̃nζ
(n)
λ

and Z/dnZ-equivariance.

(n = 1) : By direct calculation.

(n = 2) : By direct calculation based on Milanov–Zha.

(n ≥ 3) : By induction on n.

(Step 1) : If the case n = 2m is true, then so is n = 2m+ 1.

(Step 2) : If the case n = 2m− 1 is true, then so is n = 2m.

The way of proof (Step 1) and (Step 2) are different.
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Bridgeland stability condition

In the A-model side, it is expected that the oscillatory integral

∫
e−f̃n(x)dx

induces a stability condition on DbFuk→(f̃n). By Theorem 3.6, the mirror

object dual to

∫
Γj

e−f̃n(x)dx is given by
∑
λ∈In

ηψ(0)λch
(n)
Γ,λj .

Remark : [dx] is induced by the “canonical” primitive form for f̃n. Here,

“canonical” means that this primitive form is determined by exponents of f̃n.

We expect the following conjecture:
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Conjecture 3.7.

There exists a Bridgeland stability condition σ on HMF
Lfn
Sn

(fn) such that its

stability function Zσ : K0(HMF
Lfn
Sn

(fn)) −→ C is given as follows:

if n = 2m− 1, then

Zσ([Ej ]) :=
1

(2π
√
−1)n

e

[
− j − 1

dn

] m∏
i=1

(
1− e

[
−ω(n)

2i−1

])
·
∫
(R≥0)

n

e−f̃n(x)dx,

and if n = 2m, then

Zσ([Ej ]) :=
1

(2π
√
−1)n

e

[
j − 1

dn

] m∏
i=1

(
1− e

[
−ω(n)

2i

])
·
∫
(R≥0)

n

e−f̃n(x)dx,

where ω
(n)
i is the i-th rational weight of fn.

Moreover, this stability condition σ is of Gepner type with respect to the

auto-equivalence (~z1) and e[1/dn] ∈ C: (~z1).σ = σ.e

[
1

dn

]
.
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This conjecture is true for some cases.

Based on the results by Takahashi and Kajiura–Saito–Takahashi, we obtain the

following

Proposition 3.8.

Conjecture 3.7 holds for n = 1 and for invertible polynomials of ADE type in

two and three variables which is the Thom–Sebastiani sum of invertible

polynomials of chain type.
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Thank you for your attention !
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