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Background

Review : Gamma integral structure for P"

P™ : n-dimensional projective space

| the Gromov—Witten theory of P™
3 Frobenius structure (= the quantum cohomology of P™) on the complex
manifold

Mpn = @ H"(P").

q€EL

The Gamma integral structure for an algebraic variety was introduced by Iritani

and Katzarkov—Kontsevich—Pantev.
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Define a morphism chr : Ko(D"(P")) — H*(P") by

c¢hr([E]) := s Ch(E), E € D"(P").

H (1+ 0;) : the Gamma class of P™,
o

(61,.. the Chern roots of the tangent bundle of P").
rank E
e Ch(FE) := Z e[67’] : the (modefied) Chern roots of E € D°(P"),
i=1
(6F,...,6E | 5 : the Chern roots of E).

Here e[—] = exp(27yv/—1- —).

Definition 1.1 (Iritani).

The Gamma integral structure of the total Hodge cohomology space H* (P") is
defined to be a K-framing given by

1 n
mChF(KO(Db(P )
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Background

(0(0),0(1),...,0(n)) : Beilinson’s full exceptional collection on D*(P™).
{b;}_, : homogeneous basis of H*(P™) such that b; € H**(X).
@ S : matrix representation of the automorphism on Ko(D?(X)) induced by
the Serre functor § := — @ wpn [n] w.r.t. {[O(9)]}.
@ x : the Euler matrix w.r.t. {O(4)}.

@ chr := (chr,1,...,chr nt1) is the matrix such that i-th column chr; is
given by
Chr‘,i = Ch[‘(o(l)) c H*(X)

@ @ : the grading (diagonal) matrix on H*(X). That is,

G (-3)

1 : the matrix representation of the Poincaré pairing w.r.t. {b;}.
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Background

Proposition 1.2 (Iritani).

The following equality holds:

(o) "0 (o) -

chr = the central connection matrix of the Frobenius manifold

X = the Stokes matrix of the Frobenius manifold
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The mirror object of P™ is the Landau—Ginzburg model with a primitive form

°fq:((c*)n—>(c, fq(:m,...,xn)::x1+...+mn+%
1.

. T

{dwl Aee- /\dmn]

o(=|—-—7-—
X1...Tn

for ¢ € C*.

In the mirror side, there is a “natural” integral structure on

Qy, = H"((C")",Re(fq) > 0;C) induced by H,((C*)",Re(fy) > 0;Z).

Theorem 1.3 (lritani).

The Gamma integral structure on H*(X) is isomorphic to the natural one on
Q

q-

It is known by Coates—Corti—Iritani—Tseng and Iritani that for a weak Fano

toric orbifold X the same statement of Theorem 1.3 is true.
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Invertible polynomial

Invertible polynomial

f €Clz1,...,2n]: weighted homogeneous polynomial.

o 3w, .. wn,d e Z>1 such that

FO ™z, 0 A 2,) = A (21,00, 20), AeCr

Definition 2.1.

A weighted homogeneous polynomial f = f(z) is invertible if

o f is non-degenerate. That is, f has at most an isolated critical point at

the origin z = 0.

o f is of the form

for E;; € Z>o, 4,5 =1,...,n.
o The matrix E := (E;;) of size n is invertible over Q.
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Invertible polynomial

o o)

o Jacobian algebra : Jac(f) := (C[zl,...,zn]/(az B
1 n

e Milnor number : py = dimc Jac(f).
o C-vector space 0y : Qf := Q"(C™)/df AQ"1(C™).
By choosing a nowhere vanishing n-form dz := dz; A --- A dz,, we have

the following isomorphism
Jac(f) = Qy,  [6(2)] = [¢(2)dz].

Qy is an analogue of the total Hodge cohomology for an algenraic variety.

@ non-degenerate symmetric C-bilinear form Jy : Qy x Qy — C :

o1(2)p2(z)dz1 A -+ - ANdzy
Jr ([¢1(z)dz], [$2(z)dz]) := Rescn of of
872:17 sy a
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Invertible polynomial

Let fi € C[z1,...,2n] and fo € C[2],...,2,,] be invertible polynomials.
The Thom-Sebastiani sum f1 @ fo is defined by

[@fo=fiRl+1® fo€Clz1,...,2:) ®c Cl2, ..., 21

Proposition 2.2 (Kreuzer—Skarke).

Any invertible polynomial f can be written as a Thom—Sebastiani sum

f=fi® - & fp of invertible ones f,, v =1,...,p of the following types:
o (chain type) 2{'zo 4+ 25223 4+ + 2" am A+ 25m, m>1;

o (loop type) z{lzo + 252234+ -+ 20 2 + 25m 21, M > 2.

We have
o Jac(f1 @ f2) = Jac(f1) ®c Jac(f2),
° Qp o 2O Qc Qy,,

O Ufi@fs = Hfy ~ Hfar -
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Invertible polynomial

Invertible polynomial with Group

Definition 2.3.

The group of maximal diagonal symmetries Gy of f is defined as
Gr:={( 1, -, ) €E(C)" | fA121, -y nzn) = f(21,- -, 2n)} -
@ Each element g € G has a unique expression of the form
g = (e[ai],...,e[an]), 0<a; < 1.

@ The age of g € Gy is defined to be the rational number

age(g) = Z Q.
i=1
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Invertible polynomial

For each g € Gy, set
o Fix(g) :={z€C"|g-z =12z},
o f9:= flrix() : Fix(g) — C,
e ng := dimc Fix(g).

Definition 2.4.

Define a Q-graded complex vector space Qf.c, by

e, = P Vo Qg = (2s)® (—age(g)).

gEGf

For the pair (f,Gf) a non-degenerate symmetric C-bilinear form

Jf,Gf : Qf,Gf X Qf,cf — C is defined.
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Invertible polynomial

Mirror symmetry for invertible polynomials

f € Clz1,...,2n] : invertible polynomial.

fe Clz1,...,zn] : the Berglund—Hiibsch transpose of the polynomial f,

_ n n E;
fz,... xn) = ZHmj’ .

i=1j=1
It is expected by Berglund—Hiibsch that the polynomial fis a mirror dual
object corresponding to the pair (f, Gy).

Proposition 2.5 (Kreuzer).

There exists an isomorphism of Q-graded C-vector spaces

mir : Qngf,Gf.
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Invertible polynomial

Invertible polynomial of chain type

From now on, we only consider invertible polynomials of chain type:
a An—1 a
o=t 2, T 2, n>1

Then the Berglund—Hiibsch transpose is given by

rs a a a
foni=2' +xixs? + - o1 xy

For simplicity, we assume that a; > 2 forall i =1,...,n.
f’ﬂ(z) = ZillZQ + Z;2Z3 + fn72(2’37 ey Zn),
fr(%) = fa—2(21, .., Tn2) + Tn_2x," " + To1".
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Invertible polynomial

Proposition 2.6 (Kreuzer).

Define sets Bj,, B, of monomials in C[z1, ...,y inductively as follows:
Q@ (n=0) Bo:=B)=/{1}.
@ (n=1) B ::B{:{x’;wogkl §a1—2}.

0<k <az—1(i:1,...,n—1)}
0<k,<an—2 !

Q@ (n>2) B'—{kl k2. ghn

and

Bn =B, U {¢>(”—2>(x1,  Tn—2)22n " ("D (21, ... T 2) € Bn,z}.

The set B,, defines a C-basis of the Jacobian algebra J ac(fn). Namely, we
have Jac(fs) = (19" (x)] | 6 (x) € Bu)ec.

Fori=1,...,n, set

di = ai1a2 - aq, do = 1.

n

fin o= (=1)""'d;.

1=0
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Invertible polynomial

Corollary 2.7

2 |

The Milnor number 7 = dimc Jac(frn) is given by fin.
Note that #B'f~ =d, —dn_1.

{¢™} : the basis of Q; induced by the basis {¢™}.

Qf = <@c g“”)@gfn L(=1), n>2,

where k = (k1,...,kn) runs the set
{0<ki<a;—1(i=1,....,n—1), 0 <k, < an—2} and ¢(") is the element
corresponding to [z¥1, ... zkn]
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Invertible polynomial

Define two sets I/, and I,, as follows:

Q@ (n=0) Io:=1Iy:={1}.

Q@ (n=1) L :=1I1:={1,2,...,a1 — 1}.

Q@ n>2) I:={ke{l,...;dn}|antr}and I, := I, UT,_».
Remark: #1I,, = dp — dn—1 and #1,, = [in.

For every x € I,

o i _ i—1dio1 _ ne1dn—1
g = (e{dnn},...,e[( 1) 4 m},...,e{( 1) 4 H:|>€an

has order d,, and Fix(g.) = {0}.

Define rational numbers w,(fi), i=1,...,n by
o = (e |y
so that
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Invertible polynomial

3 natural inclusion map
an—2 — ana (e[a1]7 s 7e[an—2]) = (e[al]a ceey e[a"—2]7 1, 1)
We construct a basis {5,({")}%1” of the C-vector space Qy, ¢, satisfying
Qa5 = | D CE | DUnay, (D, n22
K‘el’:l
as follows:

QO (n=0) Set&”:=1 (1el,={1}).
Q@ (n=1) Sete&l” =1, , wkel.

Q@ (n>2) Set
e 14, k€I,
O EYTP AdE ) Adza), k€ Tais,

where Ei"‘” does a differential form representing f,(ﬁnﬁ).
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Invertible polynomial

For every k satisfying x* := xyt B A= B:; , one can define a rational
n

(n) -
number w, '} fori=1,...,n.

Proposition 2.8.

There exists a bijection of sets of d,, — d—1 elements

. _ ngigai—l(izl,...,n—l)} = /
w.{k_(kl,...,kn) BN =

such that wl(:i) = wfg&) ,foreachi=1,... n.
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Invertible polynomial

Proposition 2.9.

There exists an isomorphism
ir - ~ ( )
mir : (Qfﬂ7an) = (Qf"’vaﬂJf"*an)’ Ckn l—)E,(:L)

Moreover, the matrix representation n™ of .J fn,Gy, With respect to the basis
{6 }xer,, is given by
@ (n=0) 79 =),

Q@ (n=1)
M = (ailé”“"”) 7
Q@ (n=2) .
™ = &, Ot e . 0 ’
0 _anm—m

where k and X\ run the set I,.
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Invertible polynomial

Define a diagonal matrix @(n) of size [i, inductively as follows:
Q@ (n=0) Set Q® :=(0),
0 (n=1) set @ = ((ul~3) o),
Q@ (n>2) Set

where PV = (ﬁé’;)) is a matrix of size (d, — d,—1) given by

~ n 1
P = (Z (wffz) - 2>> Sex, R AE I

=1

Remark: The matrix @<") corresponds to the exponents of fn shifted by —g.
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Invertible polynomial

Proposition 2.10.
For each k = (ky, ..., ky) such that x* € B],, we have

_7 1
/ e nykax = —
(R0)" dn

where I'(s) denotes the Gamma function.

(n)
P —wg,~ )
1

n

Remark : We can consider the number such as w.,; and wx ; for any invertible

polynomial. Hence, this formula can be generalize to any invertible polynomial.
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Main results

Maximally graded matrix factorizations

Sp :=Clz1, ..., 2],

Lfn : (@ZZz @an>/ <ﬁl_iEi]’2_’}; i-l,...,n) .
j=1

HMF;Z" (fn) : the homotopy category of Ly, -graded matrix factorizations.

Proposition 3.1 (Aramaki—Takahashi).

There exists a full exceptional collection (Ex, ..., Epg,) of HMF;’:" (fn) such
that x(E;, E;) = X” where ™ is a matrix defined by x™ = 1/¢n(N),
N = (51'4_1,]'), and

n

en(®) =] (1 B tdi>(7l)n_i (n>1), wo(t):=1-t

=0

S(™) . the matrix representation of the automorphism on KO(HMFQ{" (fn))
induced by the Serre functor with respect to the basis {[E;]}4", .
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Define a matrix ch{"") := (ch{fﬁ, e ,ch%"%n) of size [in, as follows:

Q@ (n=0) Set ch%o) = (1).

Q@ (n=1) Set
(chg;)m ::F(l—w(l)) (1—e[ (”]) [ M —1)] kel =1,
@ (n>2) Set
(ch(").) - cMe [( nH” (") (j —1)] ifxk €I,
DT ) omy/ =T ch(;fj 2)),5 ifie € Inez = I\ I,
where

Hf(l—wffl))~H(1—e[w,(j$:11)]), if n=2m-—1,

C,(gn) e lil
(1 —e [w,(f;f)}) , if n=2m.

s
Il
-

—
-
S
—
53
N——
s

|
=
.

Il
—
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*

o The first part [];_, I'(1 — w™) of c™ can be considered as ff,,“an on

K,l

the k-sector Qy,, 4. (cf. Chiodo-Iritani-Ruan).

o The last part of c{™ can be considered as Ch(E1) on the k-sector (cf.
Polishchuk-Vaintrob).

@ The part e [(—1) 71%(;11) (G- 1)} comes from the auto-equivalence

((=1)"521) whose matrix representation is given by

(e[ "wiG - 1] b)) 0
0 (1)

)

which acts on the vector chg’q to get ch%n;

Therefore, ch(FTf; can be considered as the matrix representation of
“ffmc;f" Ch(E;)" with respect to the basis {£ }.cr, .
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Main results

Main Theorem 1

Theorem 3.3 (O-Takahashi).

We have the following equality:

((2;)% Ch?ﬂ)) e o] (ﬁch(r”)) =s™, (1)

1 Y [lxm]. m 1 (n) (n)
(7o) o (o) v

This theorem is an analogue of Theorem 1.2
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(Sketch of proof)
Induction on n. (1) follows from (2).

The following lemma implies (2).

Let

-2 (el

a=1
pn(t) is the Poincaré polynomial of the Ly, -graded ring

P HMF' (f.)(Er, Ex (D).
leLy,
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Main results

Integral structures

3 two isomorphisms
H,(C" Re(fn) > 0;Z) = Ho(C", f ' (1);2) = Hoor(f ' (1) 2).

Define a “Poincaré Duality” map D : H, 1 (f,, *(1); Z) — Q7 by
1 —fn A(n n =1
D)= G [T ) 6 Le ma( wiz)
(27T KEZITL (A; r *
where I' € H,,(C",Re(fn) > 0;Z) is corresponding to L € H,,_1(f ' (1); Z).
Define the integral structure an;Z of an by
Q=D (Haa(F (1 2)).

Note that H,_1(f*(1);Z) = Ko(D Fuk ™ (f,)).
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Homological mirror symmetry conjectures

DUFuk ™ (f,) = HMFL (f,).

Definition 3.5.

We define a K-group framing ch(rn) : KO(HMF;{" (fn)) — Qp..cy, by

ch ((B]) = 3 eyl €57
KEILy
. 1 ) L
We call the image 2 .7z i = ————ch (K HMFE ™ (£, ) the
ge s G52 1= g 7=y BT of 5. (fn))
Gamma integral structure of Qy, c, -
(2my/—=1)"" is due to the fact that Qy, o, has the natural weight n from the

view point of the Hodge theory.
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Main results

Main Theorem 2

? Z/dnZ-action on Q5 , and Qf, ¢, 2.
e Z/dnZ-action on Clz1,...,xn] given by

v ([ o e [

induces the one on an;z-

@ The grading shift functor (21) on HMFéj” (f») induces the action on
an;Z'

Theorem 3.6 (O-Takahashi).

The mirror isomorphism mir : Q7 =€, ¢ induces an isomorphism of
integral structures Q , = Qy, ¢, z and the isomorphism is

Z/dnZ-equivariant.

This theorem was proven for the ADE case by Milanov-Zha.
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*

(Strategy of proof)
We show

= o [ e

AeT, I

and Z/d,Z-equivariance.
e (n=1): By direct calculation.
e (n =2) : By direct calculation based on Milanov—Zha.
e (n > 3) : By induction on n.
o (Step 1) : If the case n = 2m is true, then so is n = 2m + 1.

o (Step 2) : If the case n = 2m — 1 is true, then so is n = 2m.

The way of proof (Step 1) and (Step 2) are different.
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Main results

Bridgeland stability condition

In the A-model side, it is expected that the oscillatory integral /eff"(")dx

induces a stability condition on D*Fuk™ (fn) By Theorem 3.6, the mirror
object dual to / e ™) dx is given by Z nd,mnchg’;j.

Lj eI,

Remark : [dx] is induced by the “canonical” primitive form for f,. Here,

“canonical” means that this primitive form is determined by exponents of fn

We expect the following conjecture:
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Conjecture 3.7.

There exists a Bridgeland stability condition o on HMF;’: " (fn) such that its
stability function Z, : KO(HMngn (fn)) — C is given as follows:

ifn=2m —1, then

Z([E;]) == (27“%)”9 {,jdfnl} H (1 Sy [ﬂug’;ﬂl]) ./(R>O)n G

=1

and if n = 2m, then

Zs(|E5]) = (%\E)ne [1;11] ﬁ (1 —e [—wg;)]) ,/(Rzo)n e 09

i=1

(n

Moreover, this stability condition o is of Gepner type with respect to the

where w™ is the i-th rational weight of fy,.

auto-equivalence (Z1) and e[l/d,] € C: (Z1).0 = o.e {di] .
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This conjecture is true for some cases.

Based on the results by Takahashi and Kajiura—Saito—Takahashi, we obtain the
following

Proposition 3.8.

Conjecture 3.7 holds for n = 1 and for invertible polynomials of ADE type in
two and three variables which is the Thom—Sebastiani sum of invertible

polynomials of chain type.
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