Gamma integral structure for an invertible polynomial of chain type

Takumi Otani

Osaka university

December 11, 2020

joint work with Atsushi Takahashi.

Review : Gamma integral structure for \mathbb{P}^n

 \mathbb{P}^n : n-dimensional projective space

 \downarrow the Gromov–Witten theory of \mathbb{P}^n

 $^{\exists}$ Frobenius structure (= the quantum cohomology of \mathbb{P}^n) on the complex manifold

$$M_{\mathbb{P}^n} := \bigoplus_{q \in \mathbb{Z}} H^{q,q}(\mathbb{P}^n).$$

The Gamma integral structure for an algebraic variety was introduced by Iritani and Katzarkov–Kontsevich–Pantev.

Define a morphism $\operatorname{ch}_{\Gamma}: K_0(\mathcal{D}^b(\mathbb{P}^n)) \longrightarrow H^*(\mathbb{P}^n)$ by

$$\operatorname{ch}_{\Gamma}([E]) := \widehat{\Gamma}_{\mathbb{P}^n} \operatorname{Ch}(E), \quad E \in \mathcal{D}^b(\mathbb{P}^n).$$

- ullet $\widehat{\Gamma}_{\mathbb{P}^n}:=\prod_{i=1}^n\Gamma(1+\delta_i)$: the Gamma class of \mathbb{P}^n , $(\delta_1,\ldots,\delta_n:$ the Chern roots of the tangent bundle of \mathbb{P}^n).
- $\operatorname{Ch}(E) := \sum_{i=1}^{\operatorname{rank} E} \mathbf{e}[\delta_i^E]$: the (modefied) Chern roots of $E \in \mathcal{D}^b(\mathbb{P}^n)$, $(\delta_1^E, \dots, \delta_{\operatorname{rank} E}^E : \text{ the Chern roots of } E)$.

Here $e[-] = \exp(2\pi\sqrt{-1} \cdot -)$.

Definition 1.1 (Iritani).

The Gamma integral structure of the total Hodge cohomology space $H^*(\mathbb{P}^n)$ is defined to be a K-framing given by

$$\frac{1}{(2\pi\sqrt{-1})^n}\operatorname{ch}_{\Gamma}(K_0(\mathcal{D}^b(\mathbb{P}^n))).$$

 $(\mathcal{O}(0),\mathcal{O}(1),\ldots,\mathcal{O}(n))$: Beilinson's full exceptional collection on $\mathcal{D}^b(\mathbb{P}^n)$. $\{\mathbf{b}_i\}_{i=0}^n$: homogeneous basis of $H^*(\mathbb{P}^n)$ such that $\mathbf{b}_i\in H^{i,i}(X)$.

- S : matrix representation of the automorphism on $K_0(\mathcal{D}^b(X))$ induced by the Serre functor $\mathcal{S} := \otimes \omega_{\mathbb{P}^n}[n]$ w.r.t. $\{[\mathcal{O}(i)]\}$.
- χ : the Euler matrix w.r.t. $\{\mathcal{O}(i)\}$.
- $\mathrm{ch}_{\Gamma}:=(\mathrm{ch}_{\Gamma,1},\ldots,\mathrm{ch}_{\Gamma,n+1})$ is the matrix such that i-th column $\mathrm{ch}_{\Gamma,i}$ is given by

$$\operatorname{ch}_{\Gamma,i} := \operatorname{ch}_{\Gamma}(\mathcal{O}(i)) \in H^*(X).$$

ullet \widetilde{Q} : the grading (diagonal) matrix on $H^*(X)$. That is,

$$\widetilde{Q}_{ii} := \left(i - \frac{n}{2}\right).$$

ullet η : the matrix representation of the Poincaré pairing w.r.t. $\{b_i\}$.

Proposition 1.2 (Iritani).

The following equality holds:

$$\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\mathrm{ch}_{\Gamma}\right)^{-1}\mathbf{e}\left[\widetilde{Q}\right]\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\mathrm{ch}_{\Gamma}\right) = \mathbf{S},$$

$$\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\mathrm{ch}_{\Gamma}\right)^{T}\mathbf{e}\left[\frac{1}{2}\widetilde{Q}\right]\eta\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\mathrm{ch}_{\Gamma}\right) = \chi.$$

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \mathrm{ch}_{\Gamma} \quad = \quad \text{the central connection matrix of the Frobenius manifold}$$

$$\chi \qquad \qquad \qquad \text{the Stokes matrix of the Frobenius manifold}$$

The mirror object of \mathbb{P}^n is the Landau–Ginzburg model with a primitive form

•
$$f_q: (\mathbb{C}^*)^n \longrightarrow \mathbb{C}, \quad f_q(x_1, \dots, x_n) := x_1 + \dots + x_n + \frac{q}{x_1 \dots x_n}$$

$$\bullet \ \zeta = \left[\frac{dx_1 \wedge \dots \wedge dx_n}{x_1 \dots x_n} \right]$$

for $q \in \mathbb{C}^*$.

In the mirror side, there is a "natural" integral structure on

$$\Omega_{f_q} \cong H^n((\mathbb{C}^*)^n, \operatorname{Re}(f_q) \gg 0; \mathbb{C})$$
 induced by $H_n((\mathbb{C}^*)^n, \operatorname{Re}(f_q) \gg 0; \mathbb{Z})$.

Theorem 1.3 (Iritani).

The Gamma integral structure on $H^*(X)$ is isomorphic to the natural one on Ω_{f_q} .

It is known by Coates–Corti–Iritani–Tseng and Iritani that for a weak Fano toric orbifold X the same statement of Theorem 1.3 is true.

Invertible polynomial

 $f \in \mathbb{C}[z_1, \dots, z_n]$: weighted homogeneous polynomial.

 $\Leftrightarrow {}^\exists w_1,\ldots,w_n,d\in \mathbb{Z}_{\geq 1}$ such that

$$f(\lambda^{w_1}z_1,\ldots,\lambda^{w_n}z_n)=\lambda^d f(z_1,\ldots,z_n), \quad \lambda\in\mathbb{C}^*.$$

Definition 2.1.

A weighted homogeneous polynomial $f = f(\mathbf{z})$ is invertible if

- f is non-degenerate. That is, f has at most an isolated critical point at the origin $\mathbf{z} = 0$.
- f is of the form

$$f(z_1, \ldots, z_n) = \sum_{i=1}^n \prod_{j=1}^n z_j^{\mathbb{E}_{ij}}$$

for
$$\mathbb{E}_{ij} \in \mathbb{Z}_{\geq 0}$$
, $i, j = 1, \dots, n$.

• The matrix $\mathbb{E} := (\mathbb{E}_{ij})$ of size n is invertible over \mathbb{Q} .

• Jacobian algebra :
$$\operatorname{Jac}(f) := \mathbb{C}[z_1, \dots, z_n] \left/ \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n} \right) \right.$$

- Milnor number : $\mu_f := \dim_{\mathbb{C}} \operatorname{Jac}(f)$.
- \mathbb{C} -vector space $\Omega_f:=\Omega^n(\mathbb{C}^n)/df\wedge\Omega^{n-1}(\mathbb{C}^n)$. By choosing a nowhere vanishing n-form $d\mathbf{z}:=dz_1\wedge\cdots\wedge dz_n$ we have the following isomorphism

$$\operatorname{Jac}(f) \xrightarrow{\cong} \Omega_f, \quad [\phi(\mathbf{z})] \mapsto [\phi(\mathbf{z})d\mathbf{z}].$$

 Ω_f is an analogue of the total Hodge cohomology for an algenraic variety.

• non-degenerate symmetric \mathbb{C} -bilinear form $J_f:\Omega_f\times\Omega_f\longrightarrow\mathbb{C}$:

$$J_f\left([\phi_1(\mathbf{z})d\mathbf{z}], [\phi_2(\mathbf{z})d\mathbf{z}]\right) := \operatorname{Res}_{\mathbb{C}^n} \begin{bmatrix} \phi_1(\mathbf{z})\phi_2(\mathbf{z})dz_1 \wedge \cdots \wedge dz_n \\ \frac{\partial f}{\partial z_1}, \cdots, \frac{\partial f}{\partial z_n} \end{bmatrix}.$$

Let $f_1 \in \mathbb{C}[z_1,\ldots,z_n]$ and $f_2 \in \mathbb{C}[z_1',\ldots,z_m']$ be invertible polynomials. The *Thom–Sebastiani sum* $f_1 \oplus f_2$ is defined by

$$f_1 \oplus f_2 := f_1 \otimes 1 + 1 \otimes f_2 \in \mathbb{C}[z_1, \dots, z_n] \otimes_{\mathbb{C}} \mathbb{C}[z'_1, \dots, z'_m].$$

Proposition 2.2 (Kreuzer-Skarke).

Any invertible polynomial f can be written as a Thom–Sebastiani sum $f=f_1\oplus\cdots\oplus f_p$ of invertible ones $f_{\nu},\ \nu=1,\ldots,p$ of the following types:

- ullet (chain type) $z_1^{a_1}z_2+z_2^{a_2}z_3+\cdots+z_{m-1}^{a_{m-1}}z_m+z_m^{a_m},\quad m\geq 1$;
- (loop type) $z_1^{a_1}z_2 + z_2^{a_2}z_3 + \dots + z_{m-1}^{a_{m-1}}z_m + z_m^{a_m}z_1$, $m \ge 2$.

We have

- $\operatorname{Jac}(f_1 \oplus f_2) \cong \operatorname{Jac}(f_1) \otimes_{\mathbb{C}} \operatorname{Jac}(f_2)$,
- $\bullet \ \Omega_{f_1 \oplus f_2} \cong \Omega_{f_1} \otimes_{\mathbb{C}} \Omega_{f_2},$
- $\mu_{f_1 \oplus f_2} = \mu_{f_1} \cdot \mu_{f_2}$, ...

Invertible polynomial with Group

Definition 2.3.

The group of maximal diagonal symmetries G_f of f is defined as

$$G_f := \{(\lambda_1, \dots, \lambda_n) \in (\mathbb{C}^*)^n \mid f(\lambda_1 z_1, \dots, \lambda_n z_n) = f(z_1, \dots, z_n)\}.$$

ullet Each element $g \in G_f$ has a unique expression of the form

$$g = (\mathbf{e}[\alpha_1], \dots, \mathbf{e}[\alpha_n]), \quad 0 \le \alpha_i < 1.$$

• The age of $g \in G_f$ is defined to be the rational number

$$age(g) := \sum_{i=1}^{n} \alpha_i.$$

For each $g \in G_f$, set

•
$$\operatorname{Fix}(g) := \{ \mathbf{z} \in \mathbb{C}^n \mid g \cdot \mathbf{z} = \mathbf{z} \},$$

•
$$f^g := f|_{\mathrm{Fix}(g)} : \mathrm{Fix}(g) \longrightarrow \mathbb{C}$$
,

• $n_g := \dim_{\mathbb{C}} \operatorname{Fix}(g)$.

Definition 2.4.

Define a \mathbb{Q} -graded complex vector space Ω_{f,G_f} by

$$\Omega_{f,G_f} := \bigoplus_{g \in G_f} \Omega_{f,g}, \quad \Omega_{f,g} := (\Omega_{f^g})^{G_f}(-\operatorname{age}(g)).$$

For the pair (f,G_f) a non-degenerate symmetric \mathbb{C} -bilinear form $J_{f,G_f}:\Omega_{f,G_f}\times\Omega_{f,G_f}\longrightarrow\mathbb{C}$ is defined.

Mirror symmetry for invertible polynomials

 $f \in \mathbb{C}[z_1, \dots, z_n]$: invertible polynomial.

 $\widetilde{f} \in \mathbb{C}[x_1,\ldots,x_n]$: the Berglund–Hübsch transpose of the polynomial f ,

$$\widetilde{f}(x_1,\ldots,x_n) := \sum_{i=1}^n \prod_{j=1}^n x_j^{\mathbb{E}_{ji}}.$$

It is expected by Berglund–Hübsch that the polynomial \widetilde{f} is a mirror dual object corresponding to the pair (f, G_f) .

Proposition 2.5 (Kreuzer).

There exists an isomorphism of \mathbb{Q} -graded \mathbb{C} -vector spaces

$$\mathbf{mir}: \Omega_{\widetilde{f}} \cong \Omega_{f,G_f}.$$

Invertible polynomial of chain type

From now on, we only consider invertible polynomials of chain type:

$$f_n := z_1^{a_1} z_2 + \dots + z_{n-1}^{a_{n-1}} z_n + z_n^{a_n}, \quad n \ge 1$$

Then the Berglund-Hübsch transpose is given by

$$\widetilde{f}_n := x_1^{a_1} + x_1 x_2^{a_2} + \dots + x_{n-1} x_n^{a_n}.$$

For simplicity, we assume that $a_i \geq 2$ for all $i = 1, \ldots, n$.

$$f_n(\mathbf{z}) = z_1^{a_1} z_2 + z_2^{a_2} z_3 + f_{n-2}(z_3, \dots, z_n),$$

$$\tilde{f}_n(\mathbf{x}) = \tilde{f}_{n-2}(x_1, \dots, x_{n-2}) + x_{n-2} x_{n-1}^{a_{n-1}} + x_{n-1} x_n^{a_n}.$$

Proposition 2.6 (Kreuzer).

Define sets B'_n, B_n of monomials in $\mathbb{C}[x_1, \dots, x_n]$ inductively as follows:

$$(n=1) \quad B_1 := B_1' = \left\{ x_1^{k_1} \mid 0 \le k_1 \le a_1 - 2 \right\}.$$

$$\textbf{0} \ \ (n \geq 2) \quad B_n' := \Big\{ x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n} \ \Big| \ 0 \leq k_i \leq a_i - 1 \ (i = 1, \dots, n-1) \\ 0 \leq k_n \leq a_n - 2 \Big\},$$
 and

$$B_n := B'_n \cup \left\{ \phi^{(n-2)}(x_1, \dots, x_{n-2}) x_n^{a_n - 1} \mid \phi^{(n-2)}(x_1, \dots, x_{n-2}) \in B_{n-2} \right\}.$$

The set B_n defines a \mathbb{C} -basis of the Jacobian algebra $\operatorname{Jac}(\widetilde{f}_n)$. Namely, we have $\operatorname{Jac}(\widetilde{f}_n) = \langle [\phi^{(n)}(\mathbf{x})] | \phi^{(n)}(\mathbf{x}) \in B_n \rangle_{\mathbb{C}}$.

For $i = 1, \ldots, n$, set

$$d_i := a_1 a_2 \cdots a_i, \quad d_0 := 1.$$

$$\widetilde{\mu}_n := \sum_{i=0}^n (-1)^{n-i} d_i.$$

Corollary 2.7.

The Milnor number $\mu_{\widetilde{f}_n} = \dim_{\mathbb{C}} \operatorname{Jac}(\widetilde{f}_n)$ is given by $\widetilde{\mu}_n$.

Note that $\#B'_{\widetilde{f}_n} = d_n - d_{n-1}$.

 $\{\zeta^{(n)}\}$: the basis of $\Omega_{\widetilde{f}_n}$ induced by the basis $\{\phi^{(n)}\}.$

$$\Omega_{\widetilde{f}_n} \cong \left(\bigoplus_{\mathbf{k}} \mathbb{C} \cdot \zeta_{\mathbf{k}}^{(n)}\right) \bigoplus \Omega_{\widetilde{f}_{n-2}}(-1), \ n \geq 2,$$

where $\mathbf{k}=(k_1,\ldots,k_n)$ runs the set

$$\{0 \le k_i \le a_i - 1 \ (i = 1, \dots, n - 1), \ 0 \le k_n \le a_n - 2\}$$
 and $\zeta_{\mathbf{k}}^{(n)}$ is the element corresponding to $[x_1^{k_1}, \dots, x_n^{k_n}]$.

Define two sets I'_n and I_n as follows:

$$(n=1) \quad I_1 := I'_1 := \{1, 2, \dots, a_1 - 1\}.$$

Remark: $\#I'_n = d_n - d_{n-1}$ and $\#I_n = \widetilde{\mu}_n$.

For every $\kappa \in I_n'$,

$$g_{\kappa} := \left(\mathbf{e} \left[\frac{1}{d_n} \kappa \right], \dots, \mathbf{e} \left[(-1)^{i-1} \frac{d_{i-1}}{d_n} \kappa \right], \dots, \mathbf{e} \left[(-1)^{n-1} \frac{d_{n-1}}{d_n} \kappa \right] \right) \in G_{f_n}$$

has order d_n and $Fix(g_{\kappa}) = \{0\}.$

Define rational numbers $\omega_{\kappa,i}^{(n)}, i=1,\ldots,n$ by

$$\omega_{\kappa,i}^{(n)} := (-1)^{i-1} \frac{d_{i-1}}{d_n} \cdot \kappa - \left| (-1)^{i-1} \frac{d_{i-1}}{d_n} \cdot \kappa \right|$$

so that

$$g_{\kappa} = \left(\mathbf{e}\left[\omega_{\kappa,1}^{(n)}\right], \dots, \mathbf{e}\left[\omega_{\kappa,n}^{(n)}\right]\right).$$

[∃] natural inclusion map

$$G_{f_{n-2}} \hookrightarrow G_{f_n}, \quad (\mathbf{e}[\alpha_1], \dots, \mathbf{e}[\alpha_{n-2}]) \mapsto (\mathbf{e}[\alpha_1], \dots, \mathbf{e}[\alpha_{n-2}], 1, 1).$$

We construct a basis $\{\xi_{\kappa}^{(n)}\}_{\kappa\in I_n}$ of the \mathbb{C} -vector space $\Omega_{f_n,G_{f_n}}$ satisfying

$$\Omega_{f_n,G_{f_n}} \cong \left(\bigoplus_{\kappa \in I_n'} \mathbb{C} \cdot \xi_{\kappa}^{(n)}\right) \bigoplus \Omega_{f_{n-2},G_{f_{n-2}}}(-1), \quad n \geq 2.$$

as follows:

$$(n \ge 2)$$
 Set

$$\xi_{\kappa}^{(n)} := \begin{cases} \mathbf{1}_{g_{\kappa}} & \kappa \in I_n', \\ [\overline{\xi}_{\kappa}^{(n-2)} \wedge d(z_{n-1}^{a_{n-1}}) \wedge dz_n], & \kappa \in I_{n-2}, \end{cases}$$

where $\overline{\xi}_{\kappa}^{(n-2)}$ does a differential form representing $\xi_{\kappa}^{(n-2)}.$

For every $\mathbf k$ satisfying $\mathbf x^{\mathbf k}:=x_1^{k_1}\cdots x_n^{k_n}\in B_{\widetilde f_n}'$, one can define a rational number $\omega_{\mathbf k,i}^{(n)}$ for $i=1,\dots,n$.

Proposition 2.8.

There exists a bijection of sets of $d_n - d_{n-1}$ elements

$$\psi: \left\{ \mathbf{k} = (k_1, \dots, k_n) \middle| \begin{array}{l} 0 \le k_i \le a_i - 1 \ (i = 1, \dots, n-1) \\ 0 \le k_n \le a_n - 2 \end{array} \right\} \stackrel{\cong}{\longrightarrow} I'_n,$$

such that $\omega_{\mathbf{k},i}^{(n)} = \omega_{\psi(\mathbf{k}),i}^{(n)}$ for each $i = 1, \dots, n$.

Proposition 2.9.

There exists an isomorphism

$$\mathbf{mir}: (\Omega_{\widetilde{f}_n}, J_{\widetilde{f}_n}) \cong (\Omega_{f_n, G_{f_n}}, J_{f_n, G_{f_n}}), \quad \zeta_{\mathbf{k}}^{(n)} \mapsto \xi_{\kappa}^{(n)}.$$

Moreover, the matrix representation $\eta^{(n)}$ of $J_{f_n,G_{f_n}}$ with respect to the basis $\{\xi_{\kappa}^{(n)}\}_{\kappa\in I_n}$ is given by

$$(n=0) \eta^{(0)} = (1),$$

$$(n = 1)$$

$$\eta^{(1)} = \left(\frac{1}{a_1} \delta_{\kappa + \lambda, a_1}\right),\,$$

$$(n \ge 2)$$

$$\eta^{(n)} = \begin{pmatrix} \frac{1}{d_n} \delta_{\kappa + \lambda, d_n} & 0\\ 0 & -\frac{1}{a_n} \eta^{(n-2)} \end{pmatrix},$$

where κ and λ run the set I'_n .

Define a diagonal matrix $\widetilde{Q}^{(n)}$ of size $\widetilde{\mu}_n$ inductively as follows:

1
$$(n=0)$$
 Set $\widetilde{Q}^{(0)} := (0)$,

 $(n \ge 2)$ Set

$$\widetilde{Q}^{(n)} := \begin{pmatrix} \widetilde{P}^{(n)} & 0\\ 0 & \widetilde{Q}^{(n-2)} \end{pmatrix},$$

where $\widetilde{P}^{(n)} = (\widetilde{P}_{\kappa\lambda}^{(n)})$ is a matrix of size $(d_n - d_{n-1})$ given by

$$\widetilde{P}_{\kappa\lambda}^{(n)} := \left(\sum_{l=1}^{n} \left(\omega_{\kappa,l}^{(n)} - \frac{1}{2}\right)\right) \delta_{\kappa\lambda}, \quad \kappa, \lambda \in I_n'.$$

Remark: The matrix $\widetilde{Q}^{(n)}$ corresponds to the exponents of \widetilde{f}_n shifted by $-\frac{n}{2}$.

Proposition 2.10.

For each $\mathbf{k} = (k_1, \dots, k_n)$ such that $\mathbf{x}^{\mathbf{k}} \in B'_n$, we have

$$\int_{(\mathbb{R}_{\geq 0})^n} e^{-\tilde{f}_n(\mathbf{x})} \mathbf{x}^{\mathbf{k}} d\mathbf{x} = \frac{1}{d_n} \prod_{l=1}^n \Gamma(1 - \omega_{d_n - \psi(\mathbf{k}), l}^{(n)}),$$

where $\Gamma(s)$ denotes the Gamma function.

Remark : We can consider the number such as $\omega_{\kappa,i}$ and $\omega_{\mathbf{k},i}$ for any invertible polynomial. Hence, this formula can be generalize to any invertible polynomial.

Maximally graded matrix factorizations

$$S_n := \mathbb{C}[z_1, \dots, z_n],$$

$$L_{f_n} := \left(\bigoplus_{i=1}^n \mathbb{Z}\vec{z}_i \oplus \mathbb{Z}\vec{f}_n\right) \middle/ \left(\vec{f}_n - \sum_{j=1}^n \mathbb{E}_{ij}\vec{z}_j; \ i = 1, \dots, n\right).$$

 $\mathrm{HMF}^{L_{f_n}}_{S_n}(f_n)$: the homotopy category of L_{f_n} -graded matrix factorizations.

Proposition 3.1 (Aramaki-Takahashi).

There exists a full exceptional collection $(E_1,\ldots,E_{\widetilde{\mu}_n})$ of $\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)$ such that $\chi(E_i,E_j)=\chi_{ij}^{(n)}$ where $\chi^{(n)}$ is a matrix defined by $\chi^{(n)}=1/\varphi_n(N)$, $N=(\delta_{i+1,j})$, and

$$\varphi_n(t) := \prod_{i=0}^n \left(1 - t^{d_i}\right)^{(-1)^{n-i}} \quad (n \ge 1), \quad \varphi_0(t) := 1 - t.$$

 $\mathbf{S}^{(n)}$: the matrix representation of the automorphism on $K_0(\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n))$ induced by the Serre functor with respect to the basis $\{[E_i]\}_{i=1}^{\widetilde{\mu}_n}$.

Definition 3.2.

Define a matrix $\operatorname{ch}_{\Gamma}^{(n)} := \left(\operatorname{ch}_{\Gamma,1}^{(n)}, \cdots, \operatorname{ch}_{\Gamma,\widetilde{\mu}_n}^{(n)}\right)$ of size $\widetilde{\mu}_n$ as follows:

- (n=0) Set $\operatorname{ch}_{\Gamma}^{(0)} := (1)$.
- ② (n = 1) Set

$$\left(\operatorname{ch}_{\Gamma,j}^{(1)}\right)_{\kappa} := \Gamma\left(1 - \omega_{\kappa,1}^{(1)}\right)\left(1 - \mathbf{e}\left[\omega_{\kappa,1}^{(1)}\right]\right) \mathbf{e}\left[\omega_{\kappa,1}^{(1)}(j-1)\right], \ \kappa \in I_1 = I_1'.$$

$$\left(\mathrm{ch}_{\Gamma,j}^{(n)} \right)_{\kappa} := \begin{cases} c_{\kappa}^{(n)} \mathbf{e} \left[(-1)^{n-1} \omega_{\kappa,1}^{(n)} (j-1) \right], & \text{ if } \kappa \in I_n', \\ 2\pi \sqrt{-1} \ \left(\mathrm{ch}_{\Gamma,j}^{(n-2)} \right)_{\kappa}, & \text{ if } \kappa \in I_{n-2} = I_n \setminus I_n', \end{cases}$$

where

$$c_{\kappa}^{(n)} := \left\{ \begin{array}{l} \prod\limits_{l=1}^{n} \Gamma\left(1-\omega_{\kappa,l}^{(n)}\right) \cdot \prod\limits_{i=1}^{m} \left(1-\mathbf{e}\left[\omega_{\kappa,2i-1}^{(2m-1)}\right]\right), & \text{if} \quad n=2m-1, \\ \prod\limits_{l=1}^{n} \Gamma\left(1-\omega_{\kappa,l}^{(n)}\right) \cdot \prod\limits_{i=1}^{m} \left(1-\mathbf{e}\left[\omega_{\kappa,2i}^{(2m)}\right]\right), & \text{if} \quad n=2m. \end{array} \right.$$

- The first part $\prod_{l=1}^n \Gamma(1-\omega_{\kappa,l}^{(n)})$ of $c_{\kappa}^{(n)}$ can be considered as $\widehat{\Gamma}_{f_n,G_{f_n}}$ on the κ -sector $\Omega_{f_n,g_{\kappa}}$ (cf. Chiodo–Iritani–Ruan).
- The last part of $c_{\kappa}^{(n)}$ can be considered as $\mathrm{Ch}(E_1)$ on the κ -sector (cf. Polishchuk–Vaintrob).
- The part $\mathbf{e}\left[(-1)^{n-1}\omega_{\kappa,1}^{(n)}(j-1)\right]$ comes from the auto-equivalence $((-1)^nj\vec{z}_1)$ whose matrix representation is given by

$$\begin{pmatrix} \left(\mathbf{e} \left[(-1)^{n-1} \omega_{\kappa,1}^{(n)} (j-1) \right] \delta_{\kappa \lambda} \right) & 0 \\ 0 & (1) \end{pmatrix},$$

which acts on the vector $\mathrm{ch}_{\Gamma,1}^{(n)}$ to get $\mathrm{ch}_{\Gamma,j}^{(n)}$

Therefore, $\operatorname{ch}_{\Gamma,j}^{(n)}$ can be considered as the matrix representation of " $\widehat{\Gamma}_{f_n,G_{f_n}}\operatorname{Ch}(E_j)$ " with respect to the basis $\{\xi_{\kappa}^{(n)}\}_{\kappa\in I_n}$.

Main Theorem 1

Theorem 3.3 (O-Takahashi).

We have the following equality:

$$\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\operatorname{ch}_{\Gamma}^{(n)}\right)^{-1}\mathbf{e}\left[\widetilde{Q}^{(n)}\right]\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\operatorname{ch}_{\Gamma}^{(n)}\right) = \mathbf{S}^{(n)},\tag{1}$$

$$\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\operatorname{ch}_{\Gamma}^{(n)}\right)^{T}\mathbf{e}\left[\frac{1}{2}\widetilde{Q}^{(n)}\right]\eta^{(n)}\left(\frac{1}{(2\pi)^{\frac{n}{2}}}\operatorname{ch}_{\Gamma}^{(n)}\right) = \chi^{(n)}.$$
 (2)

This theorem is an analogue of Theorem 1.2

(Sketch of proof)

Induction on n. (1) follows from (2).

The following lemma implies (2).

Lemma 3.4.

Let

$$p_n(t) := \frac{1}{\varphi_n(t)} \cdot (1 - t^{d_n}) = \prod_{i=1}^n \left(1 - t^{d_{i-1}} \right)^{(-1)^{n-i}} \quad (n \ge 1), \quad p_0(t) := 1.$$

We have

$$\chi_{i,j}^{(n)} = \frac{1}{d_n} \sum_{n=1}^{d_n} p_n \left(\mathbf{e} \left[\frac{a}{d_n} \right] \right) \mathbf{e} \left[\frac{a}{d_n} (i-j) \right].$$

 $p_n(t)$ is the Poincaré polynomial of the L_{f_n} -graded ring

$$\bigoplus_{\vec{l} \in L_{f_n}} \mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)(E_1, E_1(\vec{l})).$$

Integral structures

 $^{\exists}$ two isomorphisms

$$H_n(\mathbb{C}^n, \operatorname{Re}(\widetilde{f}_n) \gg 0; \mathbb{Z}) \cong H_n(\mathbb{C}^n, \widetilde{f}_n^{-1}(1); \mathbb{Z}) \cong H_{n-1}(\widetilde{f}_n^{-1}(1); \mathbb{Z}).$$

Define a "Poincaré Duality" map $\mathbb{D}: H_{n-1}(\widetilde{f}_n^{-1}(1); \mathbb{Z}) \to \Omega_{\widetilde{f}_n}$ by

$$\mathbb{D}(L) := \frac{1}{(2\pi\sqrt{-1})^n} \sum_{\kappa \in I_n} \left(\sum_{\lambda \in I_n} \eta^{\lambda\kappa} \int_{\Gamma} e^{-\widetilde{f}_n} \zeta_{\lambda}^{(n)} \right) \zeta_{\kappa}^{(n)}, \quad L \in H_{n-1}(\widetilde{f}_n^{-1}(1); \mathbb{Z})$$

where $\Gamma \in H_n(\mathbb{C}^n, \operatorname{Re}(\widetilde{f}_n) \gg 0; \mathbb{Z})$ is corresponding to $L \in H_{n-1}(\widetilde{f}_n^{-1}(1); \mathbb{Z})$.

Define the integral structure $\Omega_{\widetilde{f}_n:\mathbb{Z}}$ of $\Omega_{\widetilde{f}_n}$ by

$$\Omega_{\widetilde{f}_n;\mathbb{Z}} := \mathbb{D}\left(H_{n-1}(\widetilde{f}_n^{-1}(1);\mathbb{Z})\right).$$

Note that $H_{n-1}(\widetilde{f}_n^{-1}(1); \mathbb{Z}) \cong K_0(\mathcal{D}^b \operatorname{Fuk}^{\to}(\widetilde{f}_n)).$

Homological mirror symmetry conjectures

$$\mathcal{D}^b \operatorname{Fuk}^{\to}(\widetilde{f}_n) \cong \operatorname{HMF}_S^{L_f}(f_n).$$

Definition 3.5.

We define a K-group framing $\mathrm{ch}_{\Gamma}^{(n)}: K_0(\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)) \longrightarrow \Omega_{f_n,G_{f_n}}$ by

$$\operatorname{ch}_{\Gamma}^{(n)}([E_j]) := \sum_{\kappa \in I_n} \operatorname{ch}_{\Gamma,\kappa j}^{(n)} \xi_{\kappa}^{(n)}.$$

We call the image $\Omega_{f_n,G_{f_n};\mathbb{Z}}:=\frac{1}{(2\pi\sqrt{-1})^n}\mathrm{ch}_{\Gamma}^{(n)}\left(K_0(\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n))\right)$ the Gamma integral structure of $\Omega_{f_n,G_{f_n}}$.

 $(2\pi\sqrt{-1})^{-n}$ is due to the fact that $\Omega_{f_n,G_{f_n}}$ has the natural weight n from the view point of the Hodge theory.

Main Theorem 2

 $^\exists \ \mathbb{Z}/d_n\mathbb{Z}$ -action on $\Omega_{\widetilde{f}_n;\mathbb{Z}}$ and $\Omega_{f_n,G_{f_n};\mathbb{Z}}.$

• $\mathbb{Z}/d_n\mathbb{Z}$ -action on $\mathbb{C}[x_1,\ldots,x_n]$ given by

$$\begin{split} &(x_1,\ldots,x_i,\ldots,x_n) \mapsto \left(\mathbf{e}\left[\frac{1}{d_1}\right]x_1,\ldots,\mathbf{e}\left[\frac{(-1)^{i-1}}{d_i}\right]x_i,\ldots,\mathbf{e}\left[\frac{(-1)^{n-1}}{d_n}\right]x_n\right) \\ &\text{induces the one on } \Omega_{\widetilde{I}_n:\mathbb{Z}}. \end{split}$$

• The grading shift functor (\vec{z}_1) on $\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)$ induces the action on $\Omega_{\tilde{f}_n;\mathbb{Z}}.$

Theorem 3.6 (O-Takahashi).

The mirror isomorphism $\min: \Omega_{\widetilde{f}_n} \cong \Omega_{f_n,G_{f_n}}$ induces an isomorphism of integral structures $\Omega_{\widetilde{f}_n;\mathbb{Z}} \cong \Omega_{f_n,G_{f_n};\mathbb{Z}}$ and the isomorphism is $\mathbb{Z}/d_n\mathbb{Z}$ -equivariant.

This theorem was proven for the ADE case by Milanov-Zha.

(Strategy of proof)

We show

$$\operatorname{ch}_{\Gamma,\kappa 1}^{(n)} = \sum_{\lambda \in I_n} \eta^{\lambda \kappa} \int_{\Gamma_1} e^{-\tilde{f}_n} \zeta_{\lambda}^{(n)}$$

and $\mathbb{Z}/d_n\mathbb{Z}$ -equivariance.

- (n = 1): By direct calculation.
- (n=2): By direct calculation based on Milanov–Zha.
- $(n \ge 3)$: By induction on n.
 - (Step 1): If the case n=2m is true, then so is n=2m+1.
 - (Step 2) : If the case n = 2m 1 is true, then so is n = 2m.

The way of proof (Step 1) and (Step 2) are different.

Bridgeland stability condition

In the A-model side, it is expected that the oscillatory integral $\int e^{-\widetilde{f}_n(\mathbf{x})} d\mathbf{x}$ induces a stability condition on $\mathcal{D}^b\mathrm{Fuk}^{\to}(\widetilde{f}_n)$. By Theorem 3.6, the mirror object dual to $\int_{\Gamma_j} e^{-\widetilde{f}_n(\mathbf{x})} d\mathbf{x}$ is given by $\sum_{\lambda \in I_n} \eta_{\psi(\mathbf{0})\lambda} \mathrm{ch}_{\Gamma,\lambda_j}^{(n)}$.

Remark : $[d\mathbf{x}]$ is induced by the "canonical" primitive form for \widetilde{f}_n . Here, "canonical" means that this primitive form is determined by exponents of \widetilde{f}_n .

We expect the following conjecture:

Conjecture 3.7.

There exists a Bridgeland stability condition σ on $\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)$ such that its stability function $Z_\sigma: K_0(\mathrm{HMF}_{S_n}^{L_{f_n}}(f_n)) \longrightarrow \mathbb{C}$ is given as follows: if n=2m-1, then

$$Z_{\sigma}([E_j]) := \frac{1}{(2\pi\sqrt{-1})^n} \mathbf{e} \left[-\frac{j-1}{d_n} \right] \prod_{i=1}^m \left(1 - \mathbf{e} \left[-\omega_{2i-1}^{(n)} \right] \right) \cdot \int_{(\mathbb{R}_{>0})^n} e^{-\tilde{f}_n(\mathbf{x})} d\mathbf{x},$$

and if n=2m, then

$$Z_{\sigma}([E_j]) := \frac{1}{(2\pi\sqrt{-1})^n} \mathbf{e}\left[\frac{j-1}{d_n}\right] \prod_{i=1}^m \left(1 - \mathbf{e}\left[-\omega_{2i}^{(n)}\right]\right) \cdot \int_{(\mathbb{R}_{\geq 0})^n} e^{-\widetilde{f}_n(\mathbf{x})} d\mathbf{x},$$

where $\omega_i^{(n)}$ is the *i*-th rational weight of f_n .

Moreover, this stability condition σ is of Gepner type with respect to the auto-equivalence (\vec{z}_1) and $\mathbf{e}[1/d_n] \in \mathbb{C}$: $(\vec{z}_1).\sigma = \sigma.\mathbf{e}\left[\frac{1}{d_n}\right]$.

This conjecture is true for some cases.

Based on the results by Takahashi and Kajiura–Saito–Takahashi, we obtain the following

Proposition 3.8.

Conjecture 3.7 holds for n=1 and for invertible polynomials of ADE type in two and three variables which is the Thom–Sebastiani sum of invertible polynomials of chain type.

Reference:

- D. Aramaki, A. Takahashi, Maximally-graded matrix factorizations for an invertible polynomial of chain type, Adv. Math. 373 (2020).
- [2] P. Berglund, T. Hübsch, A generalized construction of mirror manifolds, Nuclear Physics B 393 (1993), 377–391.
- [3] A. Chiodo, H. Iritani, Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127–216.
- [4] T. Coates, A. Corti, H. Iritani, H.-H. Tseng, A mirror theorem for toric stacks. Compos. Math. 151 (2015), no. 10, 1878–1912.
- [5] S. Galkin, V. Golyshev, H. Iritani, Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), no. 11, 2005–2077.
- [6] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016–1079.
- [7] H. Kajiura, K. Saito, A. Takahashi, Matrix factorization and representations of quivers. II. Type ADE case, Adv. Math. 211, no. 1, 327–362 (2007).
- [8] L. Katzarkov, M. Kontsevich, T. Pantev, Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT tt*-geometry, 87–174, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.
- [9] M. Kreuzer, The mirror map for invertible LG models, Phys. Lett. B 328 (1994), no.3-4, 312-318.
- [10] M. Kreuzer, H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992), 137–147.
- [11] T. Milanov, C. Zha, Integral structure for simple singularities. SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), 081.
- [12] A. Polishchuk, A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Duke Math. J. 161 (2012), no. 10, 1863–1926.
- [13] A. Takahashi, Matrix factorizations and representations of quivers I, arXiv:0506347.

Background Invertible polynomial

Thank you for your attention !